Electrical Engineering (BS)

What is Electrical Engineering?

Electrical engineers apply the laws of electrical phenomena to design, develop and improve electronics and solid-state devices, and to control, convert and distribute energy. Electrical engineers design operational technology used in industrial control systems in many industries and organizations.

Operational technology (OT) includes a wide variety of valves, pumps, meters, sensors, reactors, turbines, generators and other electro-mechanical devices. It includes a wide variety of process control systems and controllers for industrial processes. Such devices are prevalent in the energy and chemical and petroleum-processing industries. But the healthcare industry also employs a wide variety of sensors, imaging devices, pumps, stimulators, robots and other electro-mechanical devices. The marine transportation industry, building construction and automation industry, and many, many others also employ such devices in order to accomplish routine business operations.

These devices, even those that have been maintained and operated for many years (perhaps decades), have in recent years been instrumented so sensors can provide information back to human operators, and so control signals can be sent back to the devices. In recent years, much of that process of information and control has been automated, and may employ data analytics and artificial intelligence to implement faster and safer systems. Collectively, the devices which are now connected to the internet and to each other may be referred to as the Industrial Internet of Things (IIoT).

Personally, in homes and automobiles, for entertainment and fitness and recreation, wearable devices and intelligent communication devices are more and more common. It is estimated that by the year 2020, more than 20 billion connected devices will be in use around the world (for a population of less than 8 billion humans). In developed nations, it is quite possible that each person may account for up to 10 devices. This explosion of connected devices, the Internet of Things (IoT), leads to much greater cyber threats. The growth of devices and “interconnectedness” has been much faster than the growth of cybersecurity practices, awareness and defense.

Learning in the Electrical Engineering Program at HBU

Students at HBU in the Electrical Engineering program will enjoy learning in context, working together with classmates and professors to design and build real electrical and electronic systems which function like those that are commercially available, or industrially applicable. The first two years of the program provide fundamental knowledge and skills in mathematics (e.g. calculus, linear algebra), physics, basic engineering and computer programming, with the opportunity to implement and demonstrate those skills in a sequence of projects. Additional concepts in electrical circuits and electronics, microprocessors, and computer systems in the second year help prepare students for more advanced subjects and projects in the upper levels. Students will learn from professors, and engage with industry partners. The professors in the College of Engineering act as advisors and mentors for the students, helping them to make wise course and curriculum decisions, as well as wise career decisions.

As students progress into the junior and senior year, they will learn important concepts in embedded systems, control systems and communication systems. Students may choose from advanced elective courses in digital forensics and cyber crime, wireless and mobile security, reverse engineering, and access control logic. Every student will complete at least one internship before graduation, and every student will complete a major industry-driven project during the senior year.

Career Paths for Electrical Engineers

Graduates of the BS in Electrical Engineering are expected to seek and obtain high-demand jobs in energy, healthcare, marine transportation, and other industries. Any company or agency involved in critical infrastructure needs at least some engineers who understand both the operational technology and the information technology relevant to that organization. Graduates will work in process control, network security, electrical distribution, and other engineering-related positions. Some graduates will work to design the next generation of electronic and control devices, so that better security measures can be built into the devices during design and production, before utilization and operation begins.

Preparing to be a Professional

The Institute of Electrical and Electronic Engineers (IEEE) is one of the largest professional organizations in the world. IEEE organizes its members in “Societies” which represent a particular type of industry, or a particular type of technology. HBU encourages its faculty and students to become members in a professional organization, and IEEE is one of the best. The College of Engineering will form a student chapter of IEEE to facilitate professional interactions for its students.

Here is the list of the many IEEE Societies, including a brief description of each.

Here is the IEEE news page – mostly news about the organization, but including the IEEE Spectrum magazine which contains news of broader interest.

Many resources are available to learn more about the Internet of Things. One site, WeLiveSecurity.com, offers news, views, and insight from the IoT security community. Here is a sample article about analyzing the security of your IoT devices.

Students may choose from advanced elective courses in digital forensics and cyber crime, wireless and mobile security, reverse engineering, and access control logic.

Program Goals – Electrical Engineering

The Electrical Engineering Program Educational Objectives are broadly stated goals pertaining to career and professional accomplishments desired for program graduates. Graduates of the Electrical Engineering Program are expected within a few years of graduation to:
  • Establish themselves as practicing Electrical Engineering professionals, or engage in advanced study in a related or complementary area
  • Engage in professional development in order to remain current in the field for enhanced understanding of current issues in Electrical Engineering
  • Receive positive recognition and reward for the productive application of their skills and knowledge in service to God and humanity

Learning Outcomes – Electrical Engineering

The Electrical Engineering Program will seek to produce student learning outcomes that are based on the needs of the program’s constituencies. The Electrical Engineering Program expects students to attain, by the time of graduation, the following outcomes:
  • An ability to apply knowledge of mathematics, science and engineering
  • An ability to design and conduct experiments, as well as to analyze and interpret data
  • An ability to design a system, component, or process to meet desired needs within realistic constraints, such as economic, environmental, social, political, ethical, health and safety, manufacturability and sustainability
  • An ability to function on multidisciplinary teams
  • An ability to identify, formulate responses, and solve engineering problems
  • An understanding of professional and ethical responsibility
  • An ability to communicate effectively
  • The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
  • A recognition of the need for, and an ability to engage in, lifelong learning
  • A knowledge of contemporary issues
  • An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice

Curriculum Plan

The following is a complete list of courses needed for the BS degree in Electrical Engineering, presented in an ideal, semester-by-semester schedule.

View Electrical Engineering Degree Plan

View Suggested Term-by Term Schedule: ELEN Pathways